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1. Introduction

Reciprocity is a significant part of the behavioral repertoire of humans (and other animals). People seem willing to
sacrifice their material well-being to help others. As summarized by Sobel (2005) such behavior comes in two basic varieties
which he labels “intrinsic” and “instrumental” reciprocity. In intrinsic reciprocity, a kind (unkind) act by one social agent
changes the preferences of the people he interacts with in such a way as to elicit kindness (unkindness) in response (see
also Segal and Sobel, 2007, 2008). Intrinsic reciprocity is therefore preference based and likely to depend on the context
of the game being played and the perceived intentions of the players.1 In these theories, because reciprocity is motivated
by a positive (negative) interpretation of the intentions of one’s opponent, how one arrives at (or is expected to arrive at)
a final payoff vector is an important component in determining whether behavior should be rewarded or punished. Such
behavior (or its expectation) alters the weight that players put on the welfare of their opponents. In most intrinsic theories,
see Rabin (1993) and Dufwenberg and Kirchsteiger (2004), Battigalli and Dufwenberg (2009) for example, when the game
analyzed is not repeated, reciprocity results from the first and second order beliefs of the players about the intentions of
the others which casts these models as psychological games. When games are repeated, as they are in this paper, it might
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make sense to think that subjects will look back at the previous play of their opponent in order to asses their kindness or
perhaps their intentions and beliefs. This is, in fact, what we do here.

Other theories of reciprocity include altruism and the distributional preference theories of Fehr and Schmidt (1999), and
Bolton and Ockenfels (2000). These theories differ from intrinsic models discussed above by ignoring the process through
which final outcomes are determined and concentrating on the final distributions themselves. In other words, in these
theories the preferences of agents are fixed and do not change in response to the behavior of others or one’s perception of
their intentions.

In contrast to intrinsic reciprocity, Sobel (2005) classifies reciprocity as instrumental if it is part of a repeated game
strategy where agents sacrifice their short-term gains in an effort to increase their long run (discounted) payoff. In such
models, agents are capable of being perfectly selfish, yet reciprocal behavior is observed as part of the equilibrium of the
game. If Folk Theorems apply, a wide variety of behavior can emerge along with a wide variety of equilibrium outcomes all
determined by selfish agents who are “forward looking” in the sense that they care about the impact of their actions today
on the perceptions and actions of their opponent in the future. The logic of the Folk Theorem is the logic of instrumental
reciprocity (see Rubinstein, 1979; Fudenberg and Maskin, 1986 and Abreu, 1988, and more directly for our work here Cabral,
2005).2

In this paper we embed our experiment in an indefinitely repeated veto game of the type studied theoretically by Cabral
(2005). In such veto games, in each of an infinite number of periods, Nature generates a pair of payoffs, one for each player.
Although the sum of the players’ payoffs is positive, one of the players may receive a negative payoff. Efficient equilibria
thus require that players inter-temporally exchange favors, i.e., accept negative payoffs in some period with the expectation
that such a favor will be reciprocated later in the interaction. An additional advantage of the repeated veto game is that,
unlike most other repeated games, it admits a unique efficient equilibrium in the class of trigger strategy equilibria. We
consider this equilibrium as the natural prediction of the selfish, rational behavior model and use its predictions as guide
in our empirical section. We find significant support for the instrumental forward-looking explanation of reciprocity.3

The repeated veto game is of significant theoretical and applied interest. Cabral (2005) applies it to the problem of in-
ternational merger policy, that is, the situation when a merger must be approved by multiple national authorities. A related
context is that of interest rate setting by the European Central Bank, where individual member countries have veto power
of changes on the interest rate level. An additional, closer to home, example is that of faculty recruitment, where different
groups (e.g., micro and macro) have different preferences and hiring opportunities arise at an uneven rate.

All of these situations require that participants exchange favors over time. Hence, from the point of view of experimental
economics, the indefinitely repeated veto game provides an excellent testing ground for the relative importance of altruism,
intrinsic and instrumental reciprocity and selfishness as determinants of behavior. This is what we attempt to do in this
paper.4

Methodologically, our paper makes several contributions since there are several features of our design that are new to
the indefinitely repeated game literature. In particular, as mentioned above, it is one of the first papers to examine reciprocal
behavior in indefinitely repeated games. Second, we present an innovation of some methodological use that ensures that no

2 While indefinitely repeated games are a natural context within which to test theories of reciprocity, as Asheim and Dufwenberg (2003) point out, such
reciprocity can be achieved even in finitely repeated Prisoners’ Dilemma games. Hence it need not be a necessary condition. On a different point, Reuben
and Suetens (2012) go even further and suggest that subjects may mistakenly apply rules of behavior best suited for long-term interactions outside the
lab to tasks assigned them in an experiment that is only repeated a finite number of times (see also Hagen and Hammerstein, 2006 for an interesting
discussion).

3 Our paper is not alone in suggesting that much of what looks like reciprocal or cooperative behavior can have instrumental motives. Reuben and
Suetens (2012), using an indefinitely repeated prisoners’ dilemma game, reach a conclusion similar to ours that a good deal of cooperative behavior can
be explained strategically (see also Engle-Warnick and Ruffle, 2006 and Engle-Warnick and Slonim, 2006). In a very clever design they have subjects play
an indefinitely repeated prisoners’ dilemma game using the strategy method where, just as in our paper, subjects are informed about when the last play
of the game will occur. The game they look at is a dynamic game where player 1 moves first and then player 2 and both players write down a strategy
of what they will do if the period they are in turns out to be the last period or not. The second player can also condition his action on whether the first
player has cooperated or not. By looking at the strategies used by the players it is possible to identify their motives. They conclude that most cooperation
observed is actually motivated by strategic considerations which are mostly reputation building by player 2.

Dreber et al. (2011) also offer support that cooperative behavior in an infinitely repeated prisoners’ dilemma game with noise is not motivated by
inequality averse preferences but is rather payoff maximizing and competitive. In this game, subjects play an indefinitely repeated prisoners’ dilemma
game followed by a dictator game. They are also given a questionnaire after the experiment to elicit the motivation behind their behavior. The dictator
game is run in order to be able to correlate behavior in the prisoners’ dilemma game with giving in the dictator game, a proxy for altruism.

Using the behavior of the subjects in the repeated prisoners’ dilemma, their giving in the dictator game, and their answers to the questionnaire,
Dreber et al. conclude that cooperation in repeated games is primarily motivated by long-term payoff maximization and that social preferences do not
seem to be a major source of the observed diversity of play.

4 While indefinitely repeated game settings are natural ones to use when testing for instrumental reciprocity, they are not necessary. A finite repeated
game of the type examined by Kreps et al. (1982) where the uncertainty about the existence of reciprocal types may also lead to behavior that looks
reciprocal but is actually instrumental. Further, Reuben and Suetens (2012) is an example of an experiment that identifies (rational) instrumental reciprocity
and intrinsic reciprocity in a finite game context as is Muller et al. (2008) where they examine strategic reciprocity by allowing subjects to use conditional
strategies in a two-period public goods game. In the experiment subjects play an indefinitely repeated game and can condition their strategy on whether
the round of play is the last one or not. In the experimental game it is rational to use a forward-looking reciprocal strategy if the probability that the
partner is intrinsically motivated is sufficiently high. Also, Muller et al. (2008) present experimental evidence for strategic reciprocity in a two-period public
goods game. They ask subjects to submit choices in the second period, conditional on the total contribution of the others in the first period. They find a
support for the strategic behavior rather than learning in explaining the decline in contributions over time.
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Fig. 1. Payoff structure in a repeated veto game.

repeated interaction ends before at least some predetermined number of periods have transpired (in our experiment six)
despite the fact that we use a probabilistic continuation rule to simulate discounting.5 We do this by using a technique
that makes the first six periods in any interaction deterministic with discounting yet allows these periods to blend into the
stochastically ending portion of the experiment (periods 7 and above) in a behaviorally continuous manner. This allows us to
make sure that we do not waste money on games that end “too soon.” Third, two of our treatments have the added feature
that when the last period is stochastically determined we inform the subjects that such period has arrived (see Reuben
and Suetens, 2012 for a similar treatment). In other words, while we use a stochastic stopping rule to end the indefinitely
repeated game, in two of our four treatments we inform our subjects when the last period has arrived. In the context of
our experiments, this allows us to identify whether their behavior up until that point was motivated by reciprocal or selfish
motives.

In this paper we will proceed as follows. In Section 2 we will present the theory underlying indefinitely repeated veto
games in the context of the experiment we conduct. In Section 3 we present our hypotheses while in Section 4, we present
our experimental design. In Section 5 we present our results. Finally in Section 6 we offer the conclusions.

2. Theories of agent behavior

Our theoretical analysis is based on the following repeated veto game.6 Two players interact over an infinite series of
periods. Both players discount future payoffs according to the discount factor δ. In each period t , Nature determines a
proposal, a pair of payoff values wt = (w1t, w2t) drawn from the set S according to the c.d.f. F (w), which we assume is
smooth. Both players observe both values in wt . Both players then simultaneously decide whether or not to approve the
proposal wt . If both players accept, then player i receives payoff wit . If at least one of the players rejects the proposal, then
both players receive zero. Specifically, let xit be player i’s decision at time t , where xit = 1 denotes approval and xit = 0
denotes veto. Player i’s payoff in period t is then given by

πit = wit xit x jt

Fig. 1 illustrates a possible set S (where for simplicity we drop the time component of the subscript of w). All points in
S lead to a positive aggregate payoff.7 We can consider three partitions of S . Points in region A yield a positive payoff to
both players. Points in region Di have the interesting property that (a) aggregate payoff is positive, (b) player j’s payoff is
negative.

It is straightforward to show that one equilibrium of this indefinitely repeated game would be to play a static Nash
equilibrium in every period where each player rejects all negative payoffs for himself and accepts only positive payoffs no
matter what offer is made to his or her opponent, or alternatively rejects all offers no matter whether they are positive or
negative.8 Experimental and anecdotal evidence suggest, however, that subjects are frequently “nice” to other players, that
is, approve proposals yielding negative payoff for them but a positive aggregate payoff (that is, points in regions Di ). What
theory can then explain the evidence? Our purpose in the present paper is to attempt to answer this question.

There are several reasons why outcomes do not correspond to the repeated play of static Nash equilibria. One first rea-
son is that players care about other players’ payoff: altruism or other regarding preferences. A second reason is that players
follow some notion of reciprocity in their behavior: to the extent that their partner has been kind in the past, reciprocating

5 See Dal Bó and Fréchette (2011) for an excellent example of the approach where termination is stochastic. See also, Fréchette and Yuksel (2013) for a
comparison of the discounting method used here and several used by other investigators.

6 See Cabral (2005) for a more extensive discussion of the repeated veto game and an application to international merger policy.
7 Cabral (2005) considers the more general case when S includes points with negative aggregate payoff.
8 As we will discuss later, this second equilibrium is unlikely to be played especially since it is weakly dominated by the first. Still, we list it because it

is a logical possibility.
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Fig. 2. Altruistic, myopic equilibrium.

such kindness yields positive utility. Finally, a natural explanation based on economic theory is that the outcome of coop-
eration corresponds to a Nash equilibrium of the repeated game which is different from the static Nash equilibrium; that
is, given repetition, players might achieve an equilibrium whereby some points in region Di get approved. We next develop
each theoretical hypothesis in greater detail.

✸ Altruism and other-regarding preferences. An explanation for “generous” behavior (proposals in region Di that are ap-
proved) is altruism, the idea that a player’s utility includes the amount earned by the other player. This is captured by
Φ(wit , w jt) : S → R. Specifically, suppose that, in each period, each player’s utility is given by his or her payoff plus a fixed
positive coefficient α times the amount earned by the other player. Suppose, for the moment, that players are myopic; that
is, they do not consider the continuation of the game. Such altruistic preferences imply the following definition.

Definition 1 (Altruism). Under myopic, altruistic play, xit = 1 if and only if Φ(wit , w jt) > 0, where ∂Φ
∂ wit

> 0 and ∂Φ
∂ w jt

> 0.

Fig. 2 illustrates the linear case, when Φ(wit , w jt) = wit +αw jt (where α > 0 is the coefficient of altruism). In this case,
we expect all proposals to the Nash equilibrium above the ℓ1 and ℓ2 lines to be approved.

Note that a similar result would hold if our subjects had various other types of other-regarding preferences such as those
specified by Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) since in both of these theories the decision to accept
or reject an offer at any time t would depend both on one’s own offer and that of one’s opponent. It is important to note
that if players consider the history of the game, and are, for example, inequality averse over payoffs accumulated over the
game rather than payoffs from one period, this would lead to different predictions for inequality aversion than for altruism.
Nevertheless, the players should take into account the other players’ payoff.

As we will see later, we need not restrict ourselves to myopic altruism since even in an indefinitely repeated game, if
we assume that subjects use trigger strategies, the only efficient trigger-strategy equilibrium where people have non-selfish
preferences involves subjects making their accept/reject decisions at each point in time on the basis of both offers and
not just their own. This will not be the case when subjects have selfish preferences as will be true in the instrumental
reciprocity model.9

✸ Intrinsic (backward-looking) reciprocity. An alternative explanation for “generous” behavior (proposals in region Di that
are approved) is given by what we will call intrinsic reciprocity. Such explanations are backward-looking since a player looks
back at the previous behavior of his or her opponent, makes a judgment about how kind she has been, and then decides
whether to accept a negative payoff based on how negative the payoff is and how kind the opponent has been.

The obvious question is how can we measure the kindness of a player? While there may be many ways to do this it is
clear that whatever index one uses, it should take into account not only how much of a sacrifice (how negative a payment
was accepted) a player has made in the past to help his or her opponent but also how much did a given sacrifice increase
the opponent’s payoff. For example, it is clear that player i is being kind to player j when he accepts a large negative
amount. However, for any given sacrifice, we would consider player i as being more kind if the payoff of player j increased
a lot rather than a little.

For that purpose, we define the kindness10 of player i toward player j at time period τ as:

hiτ (xiτ |wiτ , w jτ ) =
[
(xiτ − 1) − wiτ

100

]
w jτ

100
I(wiτ < 0)

9 In an experiment with a very different design than ours, Charness and Haruvy (2002) investigate whether they can separate altruistic, equity-based,
and reciprocal motives in a labor market game. They find that reciprocity, distributive concerns, and altruistic considerations all play a significant role in
players’ decisions.
10 It is important to note that this kindness index is a generalization of Rabin’s (1993) index by incorporating the amount of sacrifice and benefit in the

index.
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In this function xiτ takes a value of 1 when an offer in period τ is accepted and zero otherwise while I(wiτ < 0) is an
indicator function taking a value of 1 when the offer to player i in period τ is negative (we are assuming that one does
not exhibit kindness when one accepts a positive offer).11 Looking at the right hand side of our kindness index we notice
two terms, one inside the square brackets and one outside. The term inside the brackets we will call the negative sacrifice
component since it measures how much of a sacrifice player i is making when he accepts a given negative offer wiτ in an
effort to help player j. To understand this term, consider a given period τ and suppose that wiτ = −60. If player i accepts
this proposal (so that xiτ = 1), then we say he is being kind to his or her partner to the tune of 0.60 = (xiτ −1)− wiτ

100 where
xiτ = 1 and wiτ = −60. The maximum value of kindness in a given period is therefore 1; it corresponds to the case when
player i accepts a sacrifice of −100. Suppose, however, that the player rejects the same proposal of −60 (so xiτ = 0). We
then say he is being kind (or rather, unkind) to the tune of −0.40 = (xiτ −1)− wiτ

100 , where xiτ = 0 and wiτ = −60. Intuitively,
the idea is that kindness corresponds to accepting large negative offers. In the limit when wiτ = −100 is accepted, we get
one unit of kindness. Conversely, unkindness corresponds to rejecting offers that would imply a small sacrifice to player i.
In the limit when wiτ = 0 is rejected, we get one negative unit of kindness (or one unit of unkindness). Accepting an offer
that implies a small loss is not considered to be either kind or unkind. In the limit when wiτ = 0 is accepted, we get
(xiτ − 1) − wiτ

100 = 0. Likewise, rejecting an offer that would imply a large loss is not considered to be either kind or unkind.
In the limit when wiτ = −100 is rejected we again get (xiτ − 1) − wiτ

100 = 0.
To explain the second term, again suppose that wiτ = −60. If player i accepts this proposal (so that xiτ = 1) when

w jτ = 61 or when w jτ = 91, we say he is being kind but the magnitude of his or her kindness will be higher when
w jτ = 91 than when w jτ = 61 since his or her kind action will benefit player j more when w jτ = 91. Similarly, if he
rejects this proposal, he is being unkind and again the magnitude will be higher when w jτ = 91 than when w jτ = 61.

If players are reciprocal, we would expect a player’s utility from approving a proposal to be increasing in his or her
partner’s past kindness. Hence in order to determine the kindness of player i toward player j up until period τ , it might be
natural to simply add up hiτ (xiτ |wiτ , w jτ ) from periods 1 to τ − 1. However, not all past periods are likely to be weighted
equally in the mind of player j. He may give more recent periods an increased weight and place declining weights on the
more distant past. To capture this fact we impose a set of declining weights on past actions of player i and formulate his or
her cumulative kindness at period τ as follows:

kiτ =
τ−1∑

t=1

λ(τ−t−1)hit(xit |wiτ , w jτ ).

If players employ kindness to motivate their reciprocity then this leads to a different prediction regarding the outcome
of the game.

Definition 2 (Intrinsic reciprocity). In an intrinsic reciprocity equilibrium, xit = 1 if and only if Φ(wit ,k jt , w jt) > 0, where
∂Φ
∂ wit

> 0 and ∂Φ
∂k jt

> 0.

In the particular linear case, a proposal is approved if and only if wit + αk jt + βw jt > 0, where α > 0. In other words,
if kindness matters for some λ ∈ [0,1] and for one of the indices, the coefficient of the kindness should be strictly positive.

✸ Equilibrium (forward-looking) reciprocity. Economists have understood for a long time that selfish, individual utility
maximization is consistent with the observation of cooperative behavior when games are indefinitely repeated. While it is
possible to define an infinite set of possible strategies in the repeated veto game (as in any repeated game), we concentrate,
as is often the case, on trigger strategy equilibria. In fact, in the econometric analysis of our data we will try to identify
whether our subjects employed the efficient equilibrium which, as we will demonstrate, can only be reached using trigger
strategies. We do this not necessarily because we believe, a priori, that subjects will naturally gravitate to these types
of strategies but rather to furnish a precise prediction from which we can evaluate behavior. If observed behavior differs
qualitatively from the behavior consistent with efficient trigger strategies, then clearly we selected an incorrect benchmark
for our data analysis. As we will see, however, the behavior of our subjects is broadly consistent with the use of trigger
strategies while not precisely efficient ones. Further, since there are an infinite number of Nash equilibria, if we did not
select one for predictive purposes, then any behavior observed is likely to be rationalized by some Nash equilibrium, making
the theory vacuous.

The idea of a trigger strategy equilibrium is to consider a “cooperative phase,” where each player chooses xC
i (wi, w j);

and a “punishment phase,” where each player plays the static Nash equilibrium strategy xN
i (wi, w j); and the rule is that

players choose xC (wi, w j) so long as all players have chosen xC (wi, w j) in previous periods.
Specifically, let xk

i (wi, w j) : S → {0,1} be an action mapping from the set of possible proposals into the set of possible
actions in each period, where 1 corresponds to approval, 0 to veto; and k = C, N . With some abuse of notation, let xit be
player i’s actual choice at time t . Define the following cooperation indicator:

11 It is possible that we should consider positive offers since it may be that one way to exhibit kindness is to reject a positive offer as a way of preventing
one’s opponent, whom you care about, from trying to be kind to you by accepting a large negative offer. Such behavior is rare so we ignore it in our
kindness index.
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Fig. 3. Optimal threshold equilibrium.

ct ≡
{

1 if xiτ = xC
i (wiτ , w jτ ), ∀i,τ < t

0 otherwise

Then a trigger-strategy equilibrium is defined as follows.

Definition 3. A trigger-strategy equilibrium is characterized by strategies

xit =
{

xC
i if ct = 1

xN
i if ct = 0

Notice that there is a Nash equilibrium strategy which is simply to approve a proposal if payoff is positive:
xN

i (wi, w j) = 1 if wi ≥ 0. As we will see below, this is not the only Nash equilibrium that can be used in the punishment
phase. However, depending on what Nash equilibrium is assumed to occur, we can sustain different payoffs in equilibrium.
We are interested in characterizing those equilibria that are optimal given an out-of-equilibrium threat.

Definition 4. An optimal equilibrium is a trigger strategy equilibrium that maximizes the sum of the players’ expected
discounted payoffs.

Proposition 1 (Equilibrium (instrumental) reciprocity). For a given threat to be used in the punishment phase, there exists a unique
optimal equilibrium, and it is such that xC

i (wi, w j) = 1 if and only if wi ≥ −ℓi , where ℓi is increasing in δ and ℓi = 0 if δ = 0.

A proof may be found in Appendix B. Proposition 1 is illustrated by Fig. 3.
Proposition 1 states that along the equilibrium path of the optimal equilibrium, all proposals in S such that w1 > −ℓ1

and w2 > −ℓ2 are approved, and all the other ones are vetoed. Furthermore, for a given static Nash equilibrium to be used
as a threat strategy in the punishment phase, there is only one pair (ℓ1,ℓ2) that maximizes the sum of equilibrium payoffs.

Although in any Nash equilibrium of the one-shot version of this game, a player rejects any offer that gives negative
payoffs to himself, there is a multiplicity of Nash equilibria of this one-shot game. Some examples of the Nash equilibria of
the one-shot game are when a player accepts a proposal if and only if his or her payoff is positive, or when both players
accept if and only if w1 > 10 and w2 > 5, or rejecting any offer.

During the punishment phase players may use any of these strategies. In the proof of Proposition 1, we establish that
whichever Nash strategy of the one-shot game is used as a threat, there exists a unique threshold strategy that maximizes
the sum of the payoffs. Obviously, by using any of these strategies as a threat in the punishment phase, one supports
several strategies as a part of the equilibrium of an indefinitely repeated game. For example, for the parameters used in
the experiment, the threshold is −27 if accepting only positive offers is used as a threat; it is −88 if rejecting any offer is
used as a threat.12 One may argue that despite the multiplicity of equilibria of the one-shot game, accepting only positive
proposals is also the weakly dominant strategy, and it might be unrealistic to think that the subjects will use the weakly
dominated strategies as threats.

✸ Equilibrium (forward-looking) reciprocity with altruistic preferences. As we mentioned before we need not limit ourselves
when discussing altruism to myopic behavior. The question then arises whether it is possible that when agents with such
preferences interact over an infinite horizon they employ the same type of threshold trigger strategies as our selfish agents.
The answer is no as long as we again restrict ourselves to efficient trigger strategies. In other words, if people are altruistic
then in order to produce an efficient equilibrium in trigger strategies agents must take into account the payoffs of the agents

12 In the results section, we report thresholds as −l rather than l to emphasize that the subjects accept negative payoffs for themselves.



106 L. Cabral et al. / Games and Economic Behavior 87 (2014) 100–121

they face no matter what threat is used. Since we find strong evidence that this is not the case, we again are presented
with support for the notion that thresholds are used only by selfish agents.

These considerations yield the following proposition:

Proposition 2 (Equilibrium with altruistic preferences). If agents have altruistic preferences then no optimal trigger-strategy equilib-
rium exists in threshold strategies no matter what punishment threat is used and no matter what the functional form of the subjects’
altruistic utility function is.

A proof may be found in Appendix B.

3. Hypotheses

The theory of instrumental reciprocity being tested here is characterized by two main features: thresholds and triggers.
Thresholds characterize the cooperative phase while triggers characterize the punishment phase. If thresholds are employed
by our subjects then we can rule out altruism or other-regarding preferences as a behavioral explanation since thresholds
imply that the probability of accepting an offer in any round is independent of the offer made to one’s opponent, while
altruism and other-regarding preferences suggest that the probability of accepting an offer depends on the offer of one’s
opponent. Hypotheses 1 and 2 concern these two features of our equilibrium.

Hypothesis 1. Thresholds: Subjects base their rejections of offers on the basis of a threshold above which offers are accepted
and below which they are rejected. The probability that player i accepts a proposal is increasing in player i’s payoff and
independent of j’s payoff.

The first part of this hypothesis obviously tests the threshold property of our model while the second part allows us
to separate the impact of instrumental reciprocity from altruism (or other-regarding preferences in general) since, as stated
above, instrumental reciprocity with thresholds indicates that the rejection of an offer by subject i is independent of the
offer made to subject j, while altruism and other-regarding preference theories indicate that the probability of rejection
depends on both offers. If we discover that including the consideration of an opponent’s offer adds nothing to our ability
to predict the probability that an offer is accepted, then we have provided evidence against altruistic and other-regarding
preferences and in support of instrumental reciprocity.

Note that the fact that people use thresholds is only part of the demonstration that they were adhering to a forward
looking reciprocal equilibrium since such an equilibrium also requires subjects to punish their opponent for the remainder
of their interaction when they deviate. The punishment is to accept only non-negative offers. This yields the following
hypothesis.

Hypothesis 2. Trigger Strategies: Subjects employ trigger strategies when playing the indefinitely repeated veto game.

As Sobel (2005) has indicated, intrinsic or preference-based reciprocity is a function of the previous behavior of one’s
opponent. If one’s opponent has behaved in a kind manner, then such kindness changes the attitude of a decision maker
towards his or her opponent by increasing the weight attached to his or her payoff in the decision maker’s utility function.
The opposite is true if the opponent behaves badly. Hypothesis 3 tests this intrinsic backward-looking hypothesis and
distinguishes it from both altruism and instrumental reciprocity since neither of those theories is influenced by the past
behavior of one’s opponent. Instrumental reciprocity simply compares the current offer to the subject’s threshold while
altruism looks at the value of both current offers. Neither looks at the previous behavior of one’s opponent.

Hypothesis 3. Backward-Looking Reciprocity: The probability that player i accepts a proposal is increasing in player j’s
kindness index.

While both instrumental and intrinsic reciprocity exhibit reciprocal behavior, they do so for different reasons. With
intrinsic reciprocity, a subject is rewarded for previous kindness while with instrumental reciprocity one cooperates (accepts
a negative offer) in period t in the hope that such cooperation will be reciprocated in the future. This would imply that
if it were announced to both players that their relationship would end in the current period, then we should not observe
any subject accepting a negative offer in that period if he or she subscribed to the instrumental or forward-looking theory
(since there is no future left), while a subscriber of the intrinsic or backward-looking theory would reciprocate if the
previous kindness level of his or her opponent were high enough. In other words, when there is no tomorrow there is no
role for forward-looking reciprocity yet backward-looking reciprocity may still operate.

Hypothesis 4. The probability that player i accepts a negative proposal in any period ti depends on whether the subject is
informed that that period is the last period in the relationship he is in.

Of these four hypotheses, Hypotheses 1 and 2 investigate instrumental (forward-looking) reciprocity. While Hypothesis 1
attempts to separate it from myopic altruism (and other behavioral theories that takes opponents’ payoffs into considera-
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Fig. 4. Experimental proposals generated.

Table 1
Period payoff multipliers.

Period Multiplier

1 3.05
2 2.44
3 1.95
4 1.56
5 1.25
6 1.00
7+ 1.00

tion), Hypothesis 2 investigates whether trigger strategies were used. Hypotheses 3 and 4 try to identify whether intrinsic
(backward-looking) or instrumental (forward-looking) behavior is what is observed in the data.

In the next two sections we describe the experiment we designed to test these various hypotheses (Section 4) and
analyze statistically the data produced by the experiment (Section 5).

4. Experimental procedures and design

Our experimental design was created in an effort to test the theories described above. While we ran four treatments
(to be described below) the experimental task engaged in by our subjects in each treatment was identical and can be
described as follows. In each period, a pair of potential payoffs or offers (w1, w2) is randomly determined. These values are
uniformly drawn from the set determined by the following conditions:

−100 ≤ wi ≤ 100, 0 ≤ w1 + w2 ≤ 100

This set is illustrated by the shaded area in Fig. 4.
Both players observe both values (w1, w2). Players then simultaneously decide whether or not to approve the proposal.

If both players approve the proposal, then each gets a payoff wi . If at least one player vetoes the proposal, then both players
receive 0.

The underlying model we test is one involving an indefinitely repeated game. Following the common practice, we im-
plement the indefinitely repeated game as a repeated game that ends after each period with a continuation probability
δ (hazard rate (1 − δ)). In fact, for a risk-neutral player time discount and the probability a game will end are substitute
elements in the discount factor.

This procedure creates an obvious practical problem, namely the possibility that the actual experiment lasts for a very
short time (maybe just one period). In order to obviate this problem, we created a minimum time horizon, Tmin. Play of
the game lasts at least Tmin periods for sure; and for t > Tmin, we apply the hazard rate 1 − δ. Moreover, for t < Tmin we
introduce a payoff multiplier which decreases at rate δ. This implies that, for a risk-neutral player, the future looks the same
at every period of the game.

More generally, the formula for the multiplier xt is

xt =
{

δ(t−Tmin) if t ≤ Tmin

1 if t > Tmin,

and the values used in the experiment are given in Table 1.
Note that in all periods before period 7, where stochastic discounting starts, the payoffs are multiplied by a constant

greater than 1. For example, all payoffs earned in period 1 are multiplied by 3.05 making them more valuable than those
earned in period 4, where the multiplier is only 1.56. The multiplier decreases until period 6 where it is equal to 1 and
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Table 2
Experimental parameters and equilibrium values.

Parameter Value

Discount rate 0.8
Number of rounds 10
Min number of periods (Tmin) 6
Equilibrium threshold −27

remains at that level from that point on. Note, however, that in period 7 the hazard rate δ takes over and it is in place from
period 7 onward.

Table 2 presents the parameter values we used in our experiment. The minimum number of periods was set at Tmin = 6
and the discount rate set at δ = 0.8 (that is, after the sixth period the particular game ended with probability 20%). Each
subject played this indefinitely repeated game ten times (that is, there were ten rounds). Finally, the resulting equilibrium
thresholds under the efficient equilibrium hypothesis is given by −27 (see Appendix B for the calculations).

In the experiment, 132 subjects were recruited from the undergraduate population at New York University via an elec-
tronic recruitment system that sends all subjects in the subject pool an e-mail offering them an opportunity to participate.
Subjects played for francs which were converted into dollars at the rate of 0.6c per franc.

4.1. Experimental design

The experiment consisted of four treatments which differed by the matching protocol used and the level of information
offered to the subjects in the last period of each round. In all treatments, subjects played ten rounds of an indefinitely
repeated game. Subjects did not know ex-ante how many periods each round would last for, though they knew that there
was a random continuation probability of δ = 0.8. In two treatments (Treatments RandomKnown and RandomNotKnown),
subjects were randomly rematched with a new partner in each round, that is, after each indefinitely repeated game (ran-
domly) ended, while in the other two treatments (Treatments FixedNotKnown and FixedKnown) subjects stayed with their
first round match for the entire 10 rounds of the experiment. Furthermore, in Treatments RandomKnown and FixedKnown,
before playing the last period of each round, subjects were told that the end-period had arrived, that is, that the period they
were about to begin would be the last period of the current indefinitely repeated game. In the remaining two treatments
(Treatments FixedNotKnown, RandomNotKnown), no such information was offered. In short, we conducted a 2 × 2 design
with the treatments designated as FixedNotKnown, RandomKnown, FixedKnown, and RandomNotKnown with 30, 28, 32
and 42 subjects, respectively.

We ran these treatments for two reasons. First, we used random matching because we feared that, with fixed matching,
the 10 rounds of the indefinitely repeated game might lose their independence. For example, subjects may build up a
kindness reputation that spans across rounds. We do exploit the fixed matching protocol to demonstrate that while we fail to
see strong evidence for intrinsic reciprocity within rounds of the experiment, across rounds we do find that subjects change
the thresholds they use as a function of the kindness exhibited by the subjects they are repeatedly matched with. Second,
we varied the last period information in order to compare the relative merits of the forward and backward reciprocity
hypotheses.

5. Results

In this section we will present the results of our experiment. We will do this by testing each of the hypotheses stated
above on the individual level using the data generated by our experiment. In the logit regressions, we controlled for subject
level fixed effects.

5.1. Hypothesis 1

To discuss Hypothesis 1 we will start with a descriptive analysis.
Figs. 5a and 5b display the set of offers presented to two subjects in our Treatment FixedNotKnown, along with an

indication of which offers were rejected, dark (blue in the web version) diamonds, and which were accepted light (purple
in the web version) squares.

If Proposition 1 (and Hypothesis 1) is predictive of behavior, then in these graphs we should see a sharp division between
offers that were accepted and those that were rejected with a rejection boundary separating the two that has an infinite
slope. In other words, it should not be the case that the boundary between accepted and rejected offers has a negative finite
slope.

As we can see, in Fig. 5a this is certainly the case. For this subject (except for one observation) rejection behavior has
the threshold property; offers above the threshold are accepted and those below are rejected regardless of the offer they
imply for their opponent. Obviously, this was not the case for all subjects, which is why we also present Fig. 5b that shows
the behavior of a subject whose attitudes appear to be more consistent with altruism since he seems willing to accept
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(a)

(b)

Fig. 5. (a) Subject 24 and (b) Subject 7: Individual acceptance behavior.

somewhat disadvantaged offers as long as they offer a large gain for his or her opponent. As our more formal regression
analysis will indicate, these types of subjects are more the overwhelming exception than the rule.

Figs. 6a and 6b (again from Treatment FixedNotKnown) look at the data in another way. They present the acceptance
behavior of Subjects 19 and 13 in Treatment FixedNotKnown over the 10 rounds of their participation in the game. On the
horizontal axis we have the offer made to a given subject while on the vertical axis we measure two things. The first is a
binary {0,1} variable that takes a value of 0 if an offer was rejected and a value of 1 if it was accepted. Second we measure
the probability that a given offer is accepted using a logit regression where the binary accept/reject variable is regressed on
a subject’s own offer. If threshold behavior characterized a subject’s behavior, then, when a simple logit function is fit to this
data to explain acceptance behavior, our estimated logit regression should be a step function indicating that the probability
of acceptance for offers below the step (threshold) is 0 while it is 1 for offers above the threshold.

In Fig. 6a we present our acceptance/rejection logit function for Subject 19 estimated by regressing his or her binary
{0,1} response to his or her payoff offer. Note that Subject 19 behaves exactly as a subject should if he or she was adhering
to a strict threshold acceptance function. All offers below his or her threshold of −15 are accepted with probability 0
(rejected with probability 1) while those above the threshold are accepted with probability 1.
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(a)

(b)

Fig. 6. (a) and (b): Acceptance functions.

Subject 13 depicted in Fig. 6b is a little different since his or her reject and accept regions for offers overlap. This
means that this subject does not have a clear acceptance threshold. However, note that he is not far from perfect threshold
behavior.

This discussion naturally leads us to look for a metric to use in assessing how far away a subject is from step function
behavior and the pseudo-threshold he is using. To do this we employ a very simple one which is to find the threshold
which is such that we can fit a step-function to the data exactly by eliminating the minimal number of observations. To
illustrate this, consider Fig. 6b and Subject 13. From the logit acceptance function depicted there we see that, as opposed
to Subject 19, this subject is not using a strict threshold acceptance function. This is true because the set of rejected and
accepted offers overlap so there is not a clear separation between the sets of rejected and accepted offers. However, note
that if we simply remove 2 observations from his or her data set (those to the right of the straight line on the bottom)
we can establish a strict step function so this subject is 2 observations away from behaving as if he or she had a threshold
strategy with a step at −10. Our metric then would award him or her a score of 2 and define his or her pseudo-threshold
as −10.

Tables 7a–7d in Appendix A present, for each treatment, the estimated thresholds for each subject along with the number
of observations that need to be eliminated to create perfect threshold behavior. This is followed by the percentage of the
data not explained by these thresholds. Note that the exact threshold cannot be uniquely defined by our procedure since
there may be regions where no observations occur which straddle the actual threshold used. For that reason we provide two
thresholds per subject (min and max) each of which can be used to estimate our threshold along with the mean threshold.
In the remainder of the paper when we refer to a subject’s threshold we will be referring to the mean stated in this table.13

13 Another way of calculating the thresholds might be to consider the logit regressions. Formally, the logistic function is exp(a + bx)/(1 + exp(a + bx)), so
it takes the value of 1/2 when a + bx = 0. Since the threshold is the value of x for which subjects have 1/2 probability of taking either action, then the
threshold x∗ can be found by setting x∗ = −a/b, where a is the coefficient on the constant and b is the coefficient of the explanatory variable (own payoff).
Tables 8a–8d present these results. Our results are robust to these thresholds.
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Table 3a
For each treatment, the number of subjects with significant coefficients (at 5% level) for the logit regression where β1, β2, and β3 are the coefficients of
own payoff, opponent’s payoff and kindness index, respectively.

FixedNotKnown FixedKnown RandomNotKnown RandomKnown

Only β1 > 0 15 14 19 12
β1 > 0 and β2 > 0 5 5 3 4
β1 > 0 and β2 < 0 1 0 0 0
β1 > 0 and β3 > 0 0 1 0 5
β2 < 0 and β3 > 0 0 1 0 0
β1 > 0, β2 > 0 and β3 > 0 0 0 2 0
β1 > 0, β2 < 0 and β3 > 0 0 0 0 1

Table 3b
Logit regressions of accepting a negative offer for each treatment.

FixedNotKnown FixedKnown RandomNotKnown RandomKnown

Own offer 0.126***

(0.011)
0.075***

(0.007)
0.085***

(0.008)
0.63***

(0.006)
Partner’s offer −0.003

(0.030)
0.071
(0.037)

0.018
(0.025)

0.042
(0.024)

Constant 0.850
(1.829)

−5.618
(2.991)

1.218
(1.449)

−2.331
(1.732)

# of observations 1139 1024 1290 973

Standard errors are in parentheses.
*** Significant at 1%.

As we can see from Tables 7a–7d, while not all subjects employed a perfect threshold strategy, many of them were in
fact close to doing so in the sense that, on average, we only need to remove a few observations from each one in order
to establish perfect threshold behavior. More precisely, note that over all rounds we only need to eliminate on average
5.43, 5.96, 5.46, and 5.5 observations from any subject in our four treatments respectively in order to establish perfect
step-function behavior for him or her.14 In addition, the maintained hypothesis that subjects used a threshold strategy is
successful in explaining a large percentage of the data. For example, over all rounds the mean percentage of the data ex-
plained by our estimated thresholds are 94.38%, 94.05%, 94.32%, and 94.13% for treatments FixedNotKnown, RandomKnown,
FixedKnown, and RandomNotKnown, respectively. This is strong support for the as if assumption that threshold behavior
was operative.

These statistics actually underestimate how well threshold behavior fits our data. For example, from the logit regressions
we will report later on in this section, our subjects naturally fall into two categories; those whose behavior can be explained
exclusively with reference to one’s own offer and those who take the offers of one’s opponent into account as well.

Among the former group (constituting 102 of our 132 subjects) the mean number of observations that need to be
eliminated in order to perfectly fit our rejection data with a step function is 3.2 while among those (25 subjects) who also
care about one’s opponent’s offer (altruistic or intrinsically reciprocal types), the same number is 14.1. In other words, if we
look only at the 77.3% of our subjects who exhibit strictly selfish behavior, our closeness index implies a closer fit.15

To test the second part of Hypothesis 1, we estimate a logit acceptance/rejection function for each subject i by estimating
the probability that i accepts an offer wit given that w jt was offered to his or her pair member. We also include our
previously defined opponent’s kindness variable, k jt , in this regression, indicating the kindness of a subject’s opponent up
until the current period. In other words, we code the variable ait as a 0 if the offer in period t was rejected and 1 if it was
accepted, and we regress ait on wit , w jt , k jt and a constant. Since k jt is a function of λ, for each subject, we searched over
λ, using values between 0 and 1 in steps of 0.10, to find that λ which maximized the likelihood of the regression. These
results are reported in Table 3a.

If Hypothesis 1 is accepted, then the coefficient on the w jt variable should be insignificantly different from 0 while
that of the wit should be positive and significantly so. Note that accepting Hypothesis 1 is equivalent to rejecting the
myopic altruistic or other-regarding preferences since those theories require a significantly positive coefficient on the w jt
variable. Table 3a presents the summary of the results of our logit regressions run at the individual level for our four
treatments.

Additionally, Table 3b reports, for each treatment, the estimates of a pooled regression describing the probability of
accepting a negative offer given a proposal. As Tables 3a and 3b clearly indicate, it appears that the probability of rejecting
an offer for subjects is primarily a function of the offer they receive and not that received by their opponent. For example,
over all subjects and all treatments of the 132 subjects who participated in our experiment,16 13 subjects had behavior that

14 The median of unexplained points are 3, 4, 3.5, and 2.5 in our four treatments respectively.
15 Only 5 subjects cannot be classified at all.
16 If we restrict this logit regression to only consider negative values for a subject’s own offer, we get similar results.
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was perfectly described by thresholds in the sense that a step function (explaining rejections as a function of a subject’s
own offer) perfectly fit their data, and 18 subjects had almost a perfect fit (only 1 unexplained point). For these subjects the
estimated logit regression did not converge yet it is obvious that they only considered their own offer when contemplating
rejections.17 Including these subjects, 102 subjects had significant coefficients (at at least the 5% level) on their own offer
variable, wit , or had a perfect or almost a perfect fit. Twenty five also had significant coefficients on the w jt variable as
well as wit . None had a significant coefficient only on w jt . In short, the primary determinant of rejection behavior seems
to be one’s own offer and not that of one’s opponent. (We will discuss the coefficients on the kindness variable, k jt , in a
later section.)

These results present support for the threshold property of the instrumental reciprocity hypothesis and for rejection of
myopic altruism and other-regarding preferences since, under those hypotheses, a subject would have to take into effect his
or her opponent’s offer in determining the rejection and acceptance of an offer pair.

It is one thing to suggest that subjects behaved in a manner consistent with threshold strategies and yet another to
suggest that they employed the theoretically optimal threshold of −27 in that strategy. Here our results suggest that while
subjects did not use the theoretically optimal threshold in Random Matching treatments they did in the fixed matching
treatments. More precisely, we calculated the weighted averages depending on how many observations had to be dropped.18

Particularly, in Random Matching treatments (Treatments RandomKnown and RandomNotKnown) the weighted average of
the thresholds were −11.90 and −5.93, respectively. By using a Wilcoxon signed rank test, we see that the weighted
averages were significantly different than −27 (z = 3.735, p = 0.0002; z = 5.383, p = 0.0000). It is important to note that,
theoretically it is possible to show that those high thresholds can be explained by risk aversion. On the other hand, in
the Fixed Matching treatments (Treatments FixedNotKnown and FixedKnown), the weighted average of the thresholds were
−17.97 and −19.23, respectively. For these thresholds we cannot reject the hypothesis that they employed a threshold of
−27 at 5% level by using a Wilcoxon signed rank test (z = 1.363, p = 0.1728; z = 1.758,0.0787).

In conclusion, we have presented strong support for the idea that subjects employ threshold strategies. This result leads
to rejection of the hypothesis that subjects were myopically altruistic or exhibiting other regarding preferences. However,
we could not support the hypothesis that subjects employed the optimal thresholds across all treatments.

5.2. Hypothesis 2

The theory underlying these experiments relies on the use of trigger strategies with optimal thresholds. While we have
offered support for the existence of threshold behavior, it is harder to detect whether our subjects used trigger strategies
since punishments are only employed out of equilibrium. Given our data, however, it is hard to observe such out-of-
equilibrium behavior. For example, one test as to whether triggers were employed would be to find a subject rejecting
an offer that is better than what he or she had already accepted in an earlier period. This is true because if a threshold/trig-
ger strategy is being employed, in the cooperative phase once an offer is accepted, all offers better than that one should be
accepted as well. This would signal that the punishment phase had started. In our data, however, such occurrences are very
rare (less than 1%) and, as a result, this test cannot be used as evidence that triggers were employed.

Another feature of trigger strategies that should be observable in our data is the use of a common threshold for subjects
who are paired together in the Fixed Matching treatment. This is necessary since it must be commonly agreed upon as to
when the punishment phase should be triggered. Hence, if optimal trigger strategies with the threshold property were used
it would have to be the case that our paired subjects used the same threshold during the experiment or at least converged
to the same common threshold as time progressed. (Remember, for our experiment the optimal trigger is unique.) The
establishment of a common threshold takes time, however, at least for those subjects who do not have the ability to solve
for the optimal equilibrium strategy. Hence, one explanation for the behavior of our subjects is that while they quickly
learned to use a threshold strategy they had to interact over time to establish a common threshold upon which to base
their trigger. If this is in fact the case, we should see the difference between the thresholds used by paired subjects in the
Fixed Matching treatments converge to 0 over rounds. This is in fact what we see in Tables 9 (see Appendix A, Table 9a and
Table 9b for differences per pair).

Tables 9a and 9b present the average differences between the thresholds of paired subjects in FixedNotKnown and
FixedKnown treatments, and for RandomNotKnown and RandomKnown treatments the average differences between one’s
threshold and the threshold of the group for the first and last five rounds of the experiment. As we can see, there is a
general movement toward convergence in the thresholds used which is most pronounced in the FixedNotKnown treatment
where, in rounds 6–10 the mean difference in the thresholds used was 1.7. This convergence lends support to the idea that
our subjects were using trigger strategies but that it took time for our subjects to agree on a common threshold to serve as
a trigger. Also as it can be seen in Table 4, converging as a group is harder than convergence as a pair, therefore the mean
absolute difference from the mean is higher in the random matching treatments.

17 The regressions for these subjects are not, therefore, included in Tables 3a and 3b.
18 For example, say Subject A’s threshold is −20 and 1 out of 100 points need to be dropped; Subject B’s threshold is −10 and 5 out of 100 points need

to be dropped. Then, instead of taking the average of −20 and −10, we calculated [(−20)∗99 + (−10)∗95]/(99 + 95).
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Table 4
Mean difference in pair thresholds.

Treatment All rounds Rounds 1–5 Rounds 6–10

FixedNotKnown 6.3 11.4 1.7
RandomKnown 11.9 11.8 12.2
FixedKnown 5.9 8.6 5.1
RandomNotKnown 14.5 15.8 14.2

5.3. Hypothesis 3

If subjects subscribe to intrinsic or backward-looking reciprocity then the probability of accepting a negative offer in
any period, t , should be positively related to the previous kindness of one’s opponent up until period t − 1. To test this
hypothesis refer back to the regression reported in Table 3a where we regressed our binary acceptance decision ait on a
subject’s offer in period t , wit , his or her opponent’s offer, w jt , and his or her opponent’s kindness, k jt , up to and including
period t − 1.

As is obvious from this table, we can strongly reject the hypothesis that subjects consider the previous kindness of their
opponents when deciding whether or not to reject an offer. There were only 0, 6, 2 and 2 cases in which the kindness
variable was significant at at least the 5% level in Treatments FixedNotKnown, RandomKnown, FixedKnown and Random-
NotKnown, respectively. Furthermore, if we look at the cases such that subject’s own offer, partner’s offer and kindness
index are positive and significant, there were only 2 cases in RandomNotKnown treatment, and 0 cases in all other treat-
ments.

The above results should not suggest that kindness reciprocity has no impact at all on behavior. We suspect that over
time our subjects do respond indirectly to the kindness of their opponent by altering the threshold they use to accept and
reject offers. To test this hypothesis we perform the following simple exercise. Using the data from our FixedNotKnown
treatment, we first divide the data into early (rounds 1–5) and late (rounds 6–10) rounds. We then correlate the change in
thresholds used by our subjects from the first five to the last five rounds with the kindness of their opponents over the first
five rounds. If our hypothesis is correct then we would expect a negative correlation between first-five-round kindness and
the change in the thresholds used with more kindness observed in the first five rounds leading to lower (more negative)
thresholds in the last five rounds. The correlation performed indicates that the relationship is negative, as it should be, with
a correlation coefficient of −0.292 which is significant at the 5% level. Hence, it would appear that kindness has an indirect
impact of reciprocity – the kinder one’s opponent is in the first five rounds the lower one’s threshold is likely to be in
the last five rounds. Such behavior may help to explain the convergence of thresholds noted on when discussing trigger
strategies in Hypothesis 2.

5.4. Hypothesis 4

In our experimental design we run both fixed and random matching treatments with and without information. In the
Known treatments we inform our subjects about the occurrence of the last round just before it is played. This allows a
very natural test of whether subjects engage in backward (intrinsic) or forward-looking (instrumental) reciprocity since, if
subjects are backward looking, in the last round they should still be willing to reciprocate previous kindness with kind
behavior by accepting a negative offer, while forward looking behavior would rule out such a kind act since in the last
period of a round subjects know they have no future together and hence the motivation to reciprocate is gone. Hence if
instrumental reciprocity were the guide to behavior we should see less negative offers being accepted in the last period
of those treatments where information was full than in either the period just before the last or over all periods before
the last. We expect to observe this behavior in the Random Matching treatments but not necessarily the Fixed Matching
treatments since, in the Fixed Matching treatments, where people are rematched round after round, “last periods” lose their
importance because subjects may still be willing to accept a low negative offer in a last period of round t in order to build
a reputation that will be “reborn” in the round t + 1 when they are rematched together. It is for this reason that we did the
Random-Matching treatment in the first place.

As we see in Table 5a, our expectations were supported. Looking down column 1, we see that the fraction of negative
offers accepted in the last period of the RandomKnown treatment was 0.112 while it was 0.191 for the period just before
the last and 0.194 for all periods before the last (p < 0.05 in both cases). Note that, as expected, the same is not true for
the Fixed Matching Treatment where the last period acceptance rates were 0.248 in the FixedKnown treatment and 0.218 in
the FixedNotKnown treatment, and the difference is not significant. There are other comparisons which may be telling here
as well. For example, we may want to compare the acceptance rates for subjects in the last periods of our two Random
Matching treatments (Treatments RandomKnown and RandomNotKnown) since both periods are last periods, but in one
that fact is known while in the other it is not. As we see, the acceptance rates are in fact lower with 0.112 of the offers
being accepted when subjects know the offer was a last period offer while 0.159 were accepted when they did not know
(p < 0.05).
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Table 5a
Negative offer acceptance, last and not last rounds: all treatments.

Random
Known

Fixed
Known

Random
NotKnown

Fixed
NotKnown

Last period Mean 0.112 0.241 0.159 0.239
SD 0.317 0.430 0.367 0.428
N 98 116 157 113

All periods
but last

Mean 0.194 0.225 0.154 0.197
SD 0.396 0.418 0.361 0.398
N 949 1033 1319 1026

Next to
last period

Mean 0.191 0.248 0.141 0.218
SD 0.395 0.434 0.349 0.415
N 110 121 156 110

Table 5b
Testing negative offer acceptance, last and not last rounds: Random Matching treatments.

Random Matching
all but last

Random Matching
last period

Random Matching
next to last period

Information −0.05 −1.00** 0
(SE) (0.137) (0.455) (0.506)

Subject fixed effects YES YES YES
N 2268 255 266
R2 0.17 0.37 0.30

** p < 0.05.

In order to control dependency of the aggregate data due to observations from same subjects, we ran logit regressions
with subject fixed effects on the panel data where the left hand variable, “decision” was coded as a binary {0,1} variable
where 1 denoted acceptance and 0 rejection. This variable was regressed on one of a set of dummy variables to be de-
scribed below. We generated two dummy variables: information which assigns 1 if an observation comes from a treatment
with Known (i.e. get information on whether the current period is the last period) and lastperiod which assigns 1 if an
observation comes from the last period. By looking at the last period data only, in the Random Matching treatments (Treat-
ments RandomKnown and RandomNotKnown) we find that information has a significant effect on rejecting negative offers.
This is not the case, however, if we look at the next to last period or all periods but the last one (see Table 5b). Additionally,
in the RandomKnown treatment, lastperiod has a significant effect on rejecting negative offers (coef . = −0.078, SE = 0.038,
N = 1047, p < 0.05).

One last comparison is interesting, and that is to compare the acceptance rates in the Random Matching Known and
NotKnown treatments for all periods before the last. In other words, in these periods while the subjects in the Known
treatment knew that that period’s offer was not the last, subjects in the NotKnown treatment had to form a subjective
estimate of the probability that that offer would be the last, an estimate that presumably increased as time went on
and was positive in each period past the sixth. Under these circumstances we would expect that the acceptance rate in
the Known treatment would be higher than in the NotKnown treatment since presumably subjects knew that these were
still reputation building periods while subjects in the NotKnown treatment had a positive probability that this was the
last period. Using data in the combined NotKnown and Known Random-Matching treatments for all periods but the last
and regressing decision on information (again controlling subject fixed effects), supports the idea that acceptance rates
are higher in the periods before the last when in the RandomKnown treatment (coef . = 0.25, SE = 0.087, N = 2268,
p < 0.05).

Our comments above lend support to the idea that most of the behavior we observed in this experiment, if it was
reciprocal at all, was primarily of the instrumental type. This is supported here by the fact that when subjects know they
are in the last period of their interaction they tend to accept fewer negative offers while when they are not in the last
period, but know that they will be informed when the last period comes, they accept more, presumably in an effort to keep
their reputation alive.

5.5. Methodological contribution to indefinitely repeated games experiments

In laboratory experiments, indefinitely repeated games are induced by random termination. Using random termination
may be costly, however, since some games may end quickly (even after only one period) and if they do they furnish little
data for analysis. Because of this we introduce a novel method for our indefinitely repeated game experiments that allows
collecting more data from each subject. To do this subjects first play the repeated game for fixed number, k, of periods
(six in our experiment) with a discount factor and then play with random termination from period k + 1 onward. The
probability of termination is derived from the discount factor so that theoretically the two parts of the game “blend” into
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Table 6
Structural break regressions results: random effects logit.

Coef. Std. err. z P > |z|
my_w 0.0648 0.0034 19.01 0.000
Dummy 0.2313 1696 1.36 0.173
Dummy · my_w 0.0009 0.0048 0.19 0.848
Constant 0.0658 0.1979 0.33 0.739

N = 4811, Log likelihood = −1483.48,
prob > chi2 = 0.0000,
Log likelihood Model 1 = −1483.48,
Log likelihood Model 2 = −1485.46,
chi2(2) = 3.96, prob > 0.1373.

each other seamlessly. If this blending was, in fact, seamless, we should not observe any discrete change in the rejection
probabilities of negative offers in the last (sixth) period of the deterministic phase and the first (seventh) period of the
stochastic termination period. If we did, that would be evidence of a behavioral shift as we entered the stochastic phase of
the round. To test this we pooled all of our data and compared the proportion of subjects accepting negative offers over
two adjacent periods: the last period played with a deterministic discount factor (period 6) and the first period with a
random termination (period 7) (conditional on that period not being the last in any treatment with Known information).
What we find is that the fraction of negative offers rejected is practically identical across these two periods, 20% and 19.16%
in the 6th and 7th periods, respectively, and these proportions are not significantly different (z = 0.2706, p = 0.7867). This
result is what we hoped for since we wanted to smoothly bridge the transition between that portion of the game that was
deterministic and that which was stochastic.

As a more formal approach to investigating whether acceptance behavior changes when we move across the boundary
from periods 1–6 to periods 7 and beyond, we tested whether a structural break occurred in the estimated logit acceptance
function between periods 1–6 and 7 and above, where the logit we were interested in had the {0,1} binary acceptance
variable as a dependent variable and a subject’s own offer (my_w) as the dependent variable using only those offers that
were negative. To do this we first pooled all of our observations from all treatments. We then defined a dummy variable
that takes a value of 0 if the observation came from period 1–6 and a value of 1 if it came from periods greater than 6. This
dummy variable is entered as an independent variable and interacted with the intercept and slope coefficient in our logit
estimation using a random effects specification for the error terms. This yields the following model (Model 1): acceptance =
α + β1(my_w) + β2 D + β3 D(my_w) + vi + ϵit , where α, β1, β2, and β3 are the coefficients to be estimated. We test the
hypothesis that β2 and β3 independently are equal to zero as well as investigate whether they are jointly equal to zero. We
do the latter by estimating the model with the restriction that β2 = β3 = 0 (Model 2) and performing a maximum likelihood
ratio test. The results of this estimation are presented in Table 6.

As we can see, the results are consistent with the hypothesis that moving from a deterministic to a stochastic discounting
regime after period 6 did not have any statistically significant impact of acceptance or rejection behavior. The β2 and β3
coefficients are both insignificantly different from zero indicating that there is no structural break in the acceptance function
at period 6. In addition, the likelihood ratio test also indicates that β2 and β3 are jointly insignificantly different from
zero.

In short, this regression lends support to the idea that our method of insuring a finite number of periods of play in our
indefinitely repeated game did not alter the behavior of our subjects at the point where discounting became stochastic.

6. Conclusions

This paper has investigated the motives for reciprocal behavior in an indefinitely repeated veto game. In such games,
in each of an infinite number of periods, Nature generates a pair of payoffs, one for each player. Although the sum of the
players’ payoffs is positive, with positive probability one of the players receives a negative payoff. In each period each pair
member is asked to approve or reject the payoff pair. If both subjects accept, then they receive the payoffs proposed; if one
or more reject they both get zero. Clearly reciprocity in this game entails being willing to accept negative payoffs today
with the hope that such generosity will be reciprocated in the future.

We consider this game to be a good vehicle to study reciprocity because the rationale for reciprocal behavior is obvious
and the game is simple, despite the fact that it is indefinitely repeated. Following Cabral (2005) we designed an experiment
whose purpose was to allow us to identify which one of two possible sources of reciprocity, intrinsic or instrumental, were
most responsible for subject behavior.

Using some newly developed techniques to conduct indefinitely repeated games, our data supports the notion that in
this indefinitely repeated game context, subject behavior is better described by theories of instrumental reciprocity but
only to the extent that such reciprocity is part of a forward-looking long run self-serving strategy. This is in distinction
to intrinsic theories of reciprocity where reciprocal behavior is backward-looking and exists to reward or punish previous
kindness or unkindness. Despite this result, we find a number of ways that our subjects reciprocate kindness by sacrificing
for opponents who have proven themselves to be kind in the past.
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Finally, our results are consistent with the theory of veto games as presented in Cabral (2005) where optimal equilibrium
behavior is characterized by a threshold for one’s own payoff below which all offers are rejected but above which all offers
are accepted regardless of the offer made to one’s pair member.

Appendix A

Tables 7a–7d: Thresholds.

Table 7a
Thresholds – Treatment FixedNotKnown.

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

1 −9 −11 −10 1 1.0
2 −9 −9 −9 2 1.8
3 −83 −100 −91.5 6 5.8
4 −1 −8 −4.5 3 3.0
5 −6 −6 −6 2 2.3
6 −15 −29 −22 37 38.1
7 −27 −27 −27 6 5.8
8 −8 −8 −8 4 4.7
9 11 −21 −5 15 19.2

10 −42 −43 −42.5 7 5.3
11 2 −2 0 2 1.5
12 −35 −42 −38.5 3 3.1
13 −4 −10 −7 2 2.3
14 −19 −23 −21 4 4.1
15 −4 −4 −4 5 6.4
16 0 −1 −0.5 5 3.7
17 −43 −45 −44 13 9.9
18 −18 −26 −22 5 4.6
19 −13 −15 −14 0 0.0
20 −31 −38 −34.5 6 6.2
21 0 −1 −0.5 2 1.6
22 −97 −100 −98.5 16 19.5
23 4 3 3.5 2 2.2
24 −4 −12 −8 1 0.9
25 −17 −20 −18.5 3 3.1
26 2 −2 0 2 2.2
27 1 −1 0 0 0.0
28 −7 −17 −12 1 0.9
29 5 1 3 2 2.1
30 −18 −29 −23.5 6 7.3

Mean −16.17 −21.53 −18.85 5.43 5.62
Median −8.5 −13.5 −9.5 3.0 3.1

Table 7b
Thresholds – Treatment RandomKnown.

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

31 −16 −16 −16 10 8.7
32 −19 −41 −30 4 5.1
33 −30 −40 −35 6 6.6
34 2 −6 −2 10 9.3
35 −6 −26 −16 3 3.6
36 −14 −15 −14.5 4 3.6
37 −1 −3 −2 13 14.1
38 2 0 1 1 0.9
39 −70 −76 −73 18 15.5
40 0 −1 −0.5 1 0.9
41 −16 −21 −18.5 5 5.4
42 2 1 1.5 0 0.0
43 1 1 1 4 3.8
44 2 0 1 0 0.0
45 −7 −8 −7.5 2 2.1
46 2 −2 0 4 3.9
47 −14 −22 −18 14 12.1
48 3 1 2 2 2.0
49 −2 −2 −2 2 1.7
50 −7 −8 −7.5 9 8.7
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Table 7b (continued)

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

51 −12 −14 −13 10 9.6
52 −7 −7 −7 4 4.3
53 −8 −40 −24 7 7.9
54 −33 −51 −42 11 10.8
55 −10 −10 −10 6 6.7
56 −3 −31 −17 15 17.0
57 9 6 7.5 1 1.1
58 −8 −10 −9 1 1.2

Mean −9.29 −15.75 −12.52 5.96 5.95
Median −7.00 −9.00 −8.25 4.00 4.69

Table 7c
Thresholds – Treatment FixedKnown.

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

59 6 −4 1 6 5.5
60 −37 −58 −47.5 8 9.3
61 −6 −34 −20 20 19.6
62 −6 −19 −12.5 21 23.1
63 −31 −31 −31 8 9.3
64 −4 −10 −7 3 3.3
65 −19 −26 −22.5 1 1.0
66 −95 −96 −95.5 3 3.2
67 0 −5 −2.5 0 0.0
68 −10 −17 −13.5 2 2.0
69 −5 −13 −9 9 11.7
70 2 −1 0.5 3 2.8
71 3 −5 −1 2 2.0
72 0 0 0 1 1.1
73 4 −2 1 0 0.0
74 −10 −14 −12 4 4.1
75 −99 −100 −99.5 2 2.1
76 −2 −19 −10.5 4 3.9
77 −54 −57 −55.5 12 11.3
78 −18 −18 −18 6 7.8
79 −7 −7 −7 2 2.2
80 0 0 0 7 6.4
81 −13 −13 −13 21 20.2
82 −38 −53 −45.5 6 5.0
83 4 −2 1 2 1.9
84 −83 −83 −83 4 3.3
85 −2 −5 −3.5 0 0.0
86 5 5 5 2 2.2
87 0 −5 −2.5 6 7.1
88 −3 −4 −3.5 3 2.9
89 −1 −1 −1 1 1.0
90 6 1 3.5 6 6.6

Mean −16.03 −21.75 −18.89 5.47 5.68
Median −4.50 −11.50 −8.00 3.50 3.32

Table 7d
Thresholds – Treatment RandomNotKnown.

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

91 −6 −17 −11.5 6 7.4
92 3 −4 −0.5 4 4.1
93 −13 −22 −17.5 2 2.4
94 −19 −35 −27 3 3.1
95 0 −1 −0.5 1 1.1
96 5 −1 2 1 1.4
97 4 −1 1.5 1 1.2
98 5 4 4.5 3 2.8
99 100 100 100 25 26.9

100 −18 −35 −26.5 1 1.1
(continued on next page)
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Table 7d (continued)

Subject Max
threshold

Min
threshold

Mean
threshold

# of points
unexplained

% of points
unexplained

101 −1 −4 −2.5 6 5.5
102 1 −2 −0.5 0 0.0
103 −19 −25 −22 2 2.1
104 5 −10 −2.5 3 3.4
105 −11 −12 −11.5 4 3.8
106 −10 −15 −12.5 5 4.0
107 −16 −25 −20.5 5 5.3
108 −3 −5 −4 2 1.9
109 −10 −12 −11 2 2.8
110 −1 −4 −2.5 2 1.9
111 −8 −9 −8.5 0 0.0
112 12 6 9 0 0.0
113 −4 −7 −5.5 1 1.3
114 3 −2 0.5 20 19.8
115 −3 −4 −3.5 2 2.8
116 1 −1 0 0 0.0
117 0 0 0 0 0.0
118 −17 −22 −19.5 4 4.7
119 −15 −15 −15 4 4.3
120 −5 −6 −5.5 0 0.0
121 −19 −28 −23.5 5 6.2
122 9 −4 2.5 1 1.1
123 −11 −19 −15 24 24.5
124 100 100 100 40 45.5
125 −15 −15 −15 4 3.1
126 −40 −42 −41 15 17.9
127 13 1 7 1 1.2
128 −38 −42 −40 6 6.3
129 −4 −22 −13 11 12.0
130 2 −4 −1 1 1.3
131 −6 −10 −8 2 2.2
132 −19 −41 −30 12 10.3

Mean −1.62 −7.43 −4.52 5.50 5.87
Median −4.00 −8.00 −5.50 2.50 2.80

Table 8a
Thresholds – Treatment FixedNotKnown.

Subject Threshold

1 −8
2 −4
3 −100
4 −10
5 −8
7 −33
8 −7
9 18

10 −49
11 −6
12 −38
13 −8
14 −12
15 15
16 3
17 −49
18 −11
19 −16
20 −41
21 −1
22 −100
23 1
24 −12
25 −21
26 5
27 −2
28 −14
29 −1
30 −24

Mean −18.35
Median −9.80

Table 8b
Thresholds – Treatment RandomKnown.

Subject Threshold

31 −21
32 −32
33 −30
34 −1
35 −17
36 −17
37 −2
38 −1
39 −42
40 −1
41 −19
42 0
43 −20
44 −1
45 −11
46 1
47 −40
48 41
49 −2
50 −11
51 −44
52 −15
53 −30
54 −40
55 −8
56 −20
57 2
58 −11

Mean −13.94
Median −13.19
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Table 8c
Thresholds – Treatment FixedKnown.

Subject Threshold

59 1
60 −100
61 −64
62 −3
63 −23
64 −6
65 −19
66 −85
67 −6
68 −15
69 16
70 −2
71 −2
72 1
73 −3
74 −21
75 −100
76 −9
77 −42
78 −14
79 −8
80 −7
81 −19
82 −37
83 2
84 −75
85 −6
86 2
87 −17
88 0
89 −1
90 −6

Mean −20.89
Median −7.94

Table 8d
Thresholds – Treatment RandomNotKnown.

Subject Threshold

91 −27
92 −4
93 −18
94 −26
95 −2
96 −1
97 −1
98 7
99 100

100 −25
101 1
102 −3
103 −16
104 0
105 −11
106 −13
107 −23
108 −5
109 −11
110 −7
111 −10
112 5
113 −7
114 −10
115 −10
116 −2
117 −1
118 −24
119 −2
120 −7
121 −26
122 −2
123 27
124 100
125 −19
126 −23
127 1
128 −33
129 −5
130 0
131 −9
132 −32

Mean −4.17
Median −7.00

Table 9a
Difference in pair thresholds: FixedNotKnown Treatment.

Pair All rounds Rounds 1–5 Rounds 6–10

1–4 5 (−10,−5) 3 (−8,−5) 1 (−10,−9)

2–18 13 (−9,−22) 15 (−10,−25) 3 (−7,−10)

5–13 1 (−6,−7) 10 (−15,−5) 3 (−6,−9)

8–19 6 (−8,−14) 9 (−5,−14) 3 (−10,−13)

11–16 1 (0,−1) 11 (−12,−1) 0 (+2,+2)

21–27 1 (−1,0) 9 (−1,+8) 0 (−1,−1)

23–26 4 (−4,0) 13 (+9,−4) 2 (+2,+4)

24–28 4 (−8,−12) 10 (−7,−17) 2 (−11,−9)

25–29 22 (−19,+3) 23 (−19,+4) 1 (−2,−3)

Mean 6.3 11.4 1.7

Table 9b
Difference in pair thresholds FixedKnown.

Pair All rounds Rounds 1–5 Rounds 6–10

59–80 1 (−10) 9 (+8,−1) 4 (−4,0)

65–71 22 (−23,−1) 23 (−24,−1) 12 (−14,−2)

67–73 4 (−3,+1) 6 (−3,+3) 1 (−3,−2)

72–79 7 (0,−7) 1 (0,−1) 9 (+2,−7)

83–88 5 (1,−4) 10 (−1,−11) 2 (+1,+3)

85–87 1 (−4,−3) 8 (−4,−12) 3 (+7,+4)

86–90 1 (+5,+4) 1 (+4,+3) 5 (−8,−2)

Mean 5.9 8.6 5.1



120 L. Cabral et al. / Games and Economic Behavior 87 (2014) 100–121

Appendix B

Proof of Proposition (Equilibrium (instrumental) reciprocity). We first prove that any optimal equilibrium must have the
property that xC

i (wi, w j) = 1 if and only if wi ≥ −ℓi . Next we show that there is a unique optimal equilibrium with this
property. Finally, in the section below, which demonstrates how to derive the optimal ℓ, we demonstrate how ℓ varies with
the Nash threat assumed in the punishment phase.

Consider two points in the second quadrant (that is, where w1 > 0 and w2 < 0): A = (w A
1 , w A

2 ) and B = (w B
1 , w B

2 ).
Suppose that w A

2 > w B
2 , x2(w A

1 , w A
2 ) = 0 and x2(w B

1 , w B
2 ) = 1. In other words, player 2 approves proposal B but vetoes

proposal A, even though proposal A gives player 2 a higher payoff. If this were an equilibrium, then player 2’s no-deviation
constraint must be met at point B . But then it must also be met at point A. It follows that, by choosing x2(w A

1 , w A
2 ) = 1

instead, we get an alternative equilibrium with a higher sum of joint payoffs – a contradiction.
The above argument implies that players’ strategies must take the form xC

i (wi, w j) = 1 if and only if wi ≥ −ℓi . It also
implies that the no-deviation constraint, wi + δ

1−δ Ei ≥ δ
1−δ Ni , is exactly binding when wi = −ℓi :

−ℓi + δ

1 − δ
Ei = δ

1 − δ
Ni . (1)

Finally, it also implies that equilibrium payoff for player i is given by

Ei ≡
∫

wi≥−ℓi
w j≥−ℓ j

wi f (w)dw −
∫

wi≥0
w j≥0

wi f (w)dw.

Notice that Ei is increasing in ℓ j and decreasing in ℓi .
We now show that there exists a unique efficient equilibrium, that is, one that maximizes joint payoffs. Suppose there

were two such equilibria, corresponding to threshold levels (ℓ′
i,ℓ

′
j) and (ℓ′′

i ,ℓ′′
j ) and leading to equilibrium payoffs (E ′

i, E ′
j)

and (E ′′
i , E ′′

j ), respectively. Without loss of generality, assume E ′′
i ≥ E ′

i and E ′
j ≥ E ′′

j .
Eq. (1) and E ′′

i ≥ E ′
i imply ℓ′

i ≤ ℓ′′
i . By a similar argument, ℓ′

j ≥ ℓ′′
j . Since Ei is increasing in ℓ j and decreasing in ℓi , this

implies that E ′′
i ≤ E ′

i . Given our starting assumption that E ′′
i ≥ E ′

i , we conclude that E ′′
i = E ′

i , and so ℓ′
i = ℓ′′

i . By a similar
argument, we also conclude that E ′′

l = E ′
l and ℓ′

j = ℓ′′
j . ✷

✸ Derivation of equilibrium ℓ: First we compute the value of π N , equilibrium payoff in the static Nash game. Recall that
there are two types of Nash equilibria. In the weakly dominant strategy one (a player accepts a proposal if and only if his
payoff is positive):

The area of the region where wi ≥ 0, for both i, is given by

100∫

0

x(100 − x)dx = 500,000
3

. (2)

Straightforward calculations show that the total area of the set of proposals is given by 15,000. Since the distribution of w
is uniform over this set, it follows that π N is given by (2) divided by 15,000, or simply

π N = 100
9

.

In the class of Nash equilibria in which any offer is rejected, the payoff of each player is equal to 0.
The next step is to compute the value of π E , payoff along the repeated game efficient equilibrium path. The area of the

shaded region in Fig. 4 is given by

0∫

−ℓ

x
(
100 − (−x)

)
dx +

ℓ∫

0

x
(
100 − x − (−x)

)
dx +

100∫

ℓ

x
(
100 − x − (−ℓ)

)
dx,

or simply

2
3

ℓ3 − 1,000,000
3

+ 1
2

(100 + ℓ)
(
10,000 − ℓ2). (3)

It follows that π E is given by (3) divided by 15,000, or simply

π E = ℓ3

22,500
− 200

9
+ (100 + ℓ)(10,000 − ℓ2)

30,000
.
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Given the values of π E and π N , we can now derive the equilibrium value of ℓ by making the no-deviation inequality
binding. We thus have

ℓ + δ π E/(1 − δ) = 0 + δ π N/(1 − δ).

If the players use their weakly dominant strategy as a threat, first note that zero is a root. In fact, if ℓ = 0, then π E =
π N and the no-deviation constraint holds trivially. Hence, we are left with a quadratic equation with the roots: 150 ±
50

√
36/δ − 39, and it can easily be shown that only one of the roots (potentially) lies in the relevant interval, [−100,0].

We thus have

ℓ = 150 − 50
√

36/δ − 39.

Solving for ℓ < 0, we get δ > 3
4 . Solving for ℓ > −100, we get δ < 0.9. So finally we have

ℓ̂ =

⎧
⎪⎨

⎪⎩

0 if δ < 0.75

−150 + 50
√

36/δ − 39 if 0.75 ≤ δ ≤ 0.9

−100 if δ > 0.9

In particular, δ = 0.8 (parameter in the experiment) implies ℓ̂ = −27.53.
If any offer is rejected as a punishment strategy, then ℓ + δπ E/(1 − δ) = 0 and again only one root lies in [−100,0].

When δ = 0.8 implies ℓ̂ = 88.83. Hence, any ℓ̂ between 27.53 and 88.83 can be sustained in the equilibrium. Since the sum
of the offers is always positive, the efficient equilibrium is achieved when ℓ̂ = 88.83.

Proof of Proposition (Equilibrium with altruistic preferences). Let Φi(wit , w jt) be the altruistic utility function of the
player i such that ∂Φ

∂ wit
> 0 and ∂Φ

∂ w jt
> 0 for all i, j = 1,2. Suppose on the contrary that the optimal trigger-strategy equi-

librium exists in threshold strategies, in other words there exists ℓi such that xi(wi, w j) = 1 if and only if wi ≥ −ℓi
for some ℓi < 100. In particular, the proposal (−li, li ) is accepted but player i vetoes the proposal (−li − ε,100) for
any ε > 0. Since ∂Φ

∂ w jt
> 0, Φi(wit , w jt) is continuous and ℓi < 100, there exists an ε as small as possible such that

Φi(−li − ε,100) > Φi(−li, li). Hence, we get an alternative equilibrium in which both players would approve (−li − ε,100)
and in this an alternative equilibrium with a higher sum of joint payoffs – a contradiction. ✷
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